АНАЛИЗ АБЕРРАЦИЙ ХРОМОСОМ У СВИНЕЙ И КРУПНОГО РОГАТОГО СКОТА: ПЕРВЫЕ РЕЗУЛЬТАТЫ ЦИТОГЕНЕТИЧЕСКОГО МОНИТОРИНГА СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ ОРЛОВСКОЙ ОБЛАСТИ

Исследованы карийотипы 169 свиней СПЦ «Знаменское» и карийотипы 92 голов крупнорогатого скота трёх хозяйств Урского и Болховского районов Орловской области. Робертсонасовские транслокации и иных наследуемых аберраций хромосом, выявляемых при изохроматической окраске, у свиней и КРС не обнаружено. Частота aberrant metaphases в лимфоцитах свиней варьировалась от 2,38 до 4,18%; в лимфоцитах КРС – 5,97±0,88%.

Ключевые слова: крупный рогатый скот, свинья, аберрация хромосом.

Интенсификация животноводства в Орловской области может основываться только на современных технологиях воспроизводства животных и, в частности, на использовании искусственного осеменения. Такая технология воспроизводства животных связана со значительным уменьшением числа производителей и возрастанием роли их генетической структуры в формировании следующих поколений, используемых в производстве. Важным аспектом генетически здорового состояния животных в ремонтных и маточных стадах животноводческих хозяйств является цитогенетический контроль животных.

Наследуемые хромосомные аберрации стали предметом интереса животноводов более 50 лет назад, когда было обнаружено, что носители инверсий и транслокаций имеют пониженную плодовитость. За этот период была изучена цитогенетика многих пород сельскохозяйственных животных, определён спектр наследуемых аберраций хромосом и определены их биологические эффекты.

Современное сельскохозяйственное производство обречно развиваться в регионах с высокой плотностью населения и в непосредственной близости от промышленных предприятий. По этой причине антропогенное загрязнение окружающей среды является мощным фактором, воздействующим на наследственность животных. В связи с этим одним из важных разделов генетического мониторинга является анализ частоты хромосомных аберраций в соматических и генеративных клетках сельскохозяйственных животных.

Данная публикация освещает первые результаты цитогенетического анализа свиней и крупного рогатого скота нескольких хозяйств Орловской области, полученные в лаборатории генетики Инновационного научно-исследовательского испытательного центра ОрёлГАУ.

Материалы и методы исследований

Объектами исследования служили крупный рогатый скот (всего 92 головы) и свиньи (169 голов). Были изучены карийотипы 48 коров из ООО «Юниверс» Болховского района, 15 коров из ООО «Урицкое» Урицкого района; 29 голов КРС (26 коров и 3 быка) из КФХ Коськина В.В. Болховского района.

Все исследованные свиньи были из СПЦ «Знаменское» и принадлежали к породе «Дюрочек» (ДУ) и гибридной («сингетической») породе «Боди» (С). Пригодные для анализа препараты получены от 157 свиней. Проанализированные животные были представлены: 15 основными свиноматками (экспортными, 9 ДУ и 6 С); 32 основными хряками (экспортными, 18 ДУ и 14 С); 30 свиноматками первого поколения (полученными в СПЦ, 11 ДУ и 19 С); 25 свиноматками второго поколения (20ДУ, 5С); 30 хряками первого поколения (13 ДУ и 17 С); 25 хряками второго поколения (15 ДУ и 10 С).

Материалом для исследований служила кровь, которую получали у КРС из яремной вены, у свиней – из хвостовой вены. Кровь животных отбирали в вакуумные стерильные пробирки, содержащие гепарин. Культуры клеток ставили в день доставки образцов крови в лабораторию. Препараты хромосом готовили из клеток краткосрочных культур лимфоцитов. Культтивирование клеток и препараты
хромосом выполнили в соответствии с опубликованными методическими рекомендациями [3, 4, 5, 7, 8, 12, 14], а также личным сообщением ведущего цитогенетика ВИЖа – проф. д.б.н. П.М. Кленовичкого. Препараты хромосом исследовали и фотографировали, используя исследовательский фотомикроскоп «Axiolimage AI» (Karl Zeizz, ФРГ) и программу «VideoTest Карио» НПО «VideoTest» (Санкт-Петербург, РФ).

Анализ аберраций хромосом проводили путём визуального просмотра метафазных пластинок, хорошо окрашенных и с хорошим разбросом, без карнитипирования. От каждой особи, в зависимости от качества препарата, исследовали по 50-130 метафазных пластинок, удовлетворяющих необходимым требованиям. Повреждения хромосом учитывали согласно рекомендациям, изложенным в методических работах [1, 8, 9] и обеспечивающим фактическую и статистическую достоверность полученных данных. Учитывали количество полиплоидизованных клеток, а также все типы хромосомных и хроматидных (простых и обменных) аберраций хромосом. Ахроматические пробелы (хроматидные и изохроматидные) к аберрациям не относили и учитывали отдельно. В большинстве случаев сравнивали частоты аберрантных клеток, а не частоты аберраций хромосом. Обусловлено это тем, что при сравнении спонтанных и индуцированных частот хромосомных аберраций в клетках мlekопитающих показана независимость числа аберраций и числа разрывов хромосом на клетку [10]. Статистический анализ полученных данных выполнен в соответствии с рекомендациями [11].

Результаты и обсуждение

Препараты хромосом свиней были неоднаковыми по качеству (степени спираллизации хромосом, разбросу хромосом, количеству цитоплазмы вокруг них). По этой причине для животных, от которых получены препараты недостаточно высокого качества, был установлен только карнитип, но по не менее, чем 10 метафазным пластинам с монохромной окраской хромосом (рис.1). Препараты хорошего и отличного качества были использованы для анализа частоты хромосомных аберраций.

Рисунок 1 – Карнитип хряка. 2n =38. Монохромное окрашивание (ориг.).

Животных с центрическими сляниями хромосом в карнитипах среди изученных свиней не обнаружили. Центрические сляния хромосом у свиней встречаются реже, чем у КРС, однако возникшие мутации могут существенно снижать плодовитость носителей из-за нарушений расхождения хромосом в мейозе.

Среди изученных свиней мы не обнаружили животных с видимыми при тотальной окраске рекирикционных транслокациях, изменяющая обычную морфологию хромосом. Полученные результаты согласуются с данными других исследователей. Например, при анализе 306 свиней различных пород П.М.Кленовичиным (ВИЖ РАСХН, личное сообщение) также не были обнаружены наследуемые аберрации хромосом. Объясняется это тем, что большинство фенотипически нормальных животных обычно имеют и нормальный карнитип. Наследуемые же транслокации у вида Sus scrofa domestica обнаружены у хряков, у которых предварительно была диагностирована пониженная плодовитость.

Для их выявления многих мелких рекирикционных транслокаций необходимо дифференциальная окраска хромосом, так как многие из таких структурных аберраций не изменяют морфологию хромосом. Полученные нами результаты G-окрашивания хромосом позволяли идентифицировать почти все пары гомологичных хромосом, но пока были недостаточно удовлетворительными для того, чтобы по ним можно было идентифицировать транслокации. Эта работа будет выполнена в последующем.

Таким образом, по результатам анализов монокохромно окрашенных хромосом следует, что карнитипы проанализированных 157 свиней нормальные.

Цитогенетический анализ крупного рогатого скота, выращиваемого в Орловской области, является важной задачей. Практическое значение подобных исследований связано с тем, что распространение среди животных различных наследственных аберраций хромосом приносит ощутимый ущерб скотоводству, а своевременное выявление носителей наследуемых хромосомных перестроек позволяет подобные потери избежать.

В результате цитогенетического анализа было установлено, что все обследованные животные имели стандартный карнитип 2n=60 (рис. 2). Животных с центрическими сляниями хромосом не обнаружено. У проанализированных коров также не было обнаружено крупных рекирикционных транслокаций, которые могли бы быть обнаружены при тотальной окраске хромосом. Исследования карнитипов с использованием G-бондинга и методов FISH-окрашивания являются перспективными задачами лаборатории.
Рисунок 2 – Карнитин коровы быka. 2n=60. Многохромное окрашивание (ориг.).

Генетический мониторинг антропогенного загрязнения среды предполагает анализ генетических нарушений в соматических и генеративных клетках животных из природных популяций, являющихся в данном случае моделями для анализа последствий воздействия антропогенных факторов на биоту. Вместе с тем представляет достаточно большой интерес анализ техногенных влияний на наследственность сельскохозяйственных животных. Причина генетических нарушений у сельскохозяйственных животных могут быть самые различные факторы: загрязнение среды обитания химическими веществами, воздействие антропогенных физических факторов (предназначенные – интенсивной радиации и электромагнитных полей), биологические мутагены (вирусные и др. инфекции). В последнее время широко обсуждается проблема возможных генетических последствий при использовании геномодифицированных продуктов и фуража. Кроме того, причиной генетической нестабильности геномов сельскохозяйственных животных могут быть разнообразные генетические процессы, вызванные интенсивной гибридизацией и селекцией животных. Одним из возможных ключевых методов оценки нестабильности геномов может быть анализ аберраций хромосом в соматических клетках сельскохозяйственных животных и, в частности в клетках краткосрочных культур лимфоцитов. Принимая это во внимание, были исследована частота аберраций хромосом в культурах лимфоцитов свиней, разводимых в СГЦ «Знаменское». Исследовали синантомат и хряков породы «Дюрок», родительского поколения, экспортированных из Канады и животных обоих полов первого и второго поколений. Этот анализ преследовал цель определить, будет ли изменяться спонтанный уровень аберраций хромосом у животных разных поколений. Результаты анализа представлены в таблице 1.

| Таблица 1 – Частоты аберраций хромосом в культурах лимфоцитов свиней родительского поколения и потомков первого и второго поколений. |
|---|---|---|---|---|---|
| Выборка | Изучено | Количество и частота аберраций (% ± стандартная ошибка) | Обнаруженные аберрации | Количество аберраций на 1 клетку | Критерий [13, с. 138], Достоверность различий, p |
| | животных | клеток | | | |
| Р | 9 | 505 | 12 (2,38 ±0,03) | 5 | – | – | – | 7 | 10 | 0,024 | 1,0 | – | – |
| P | 8 | 526 | 14 (2,66 ±0,03) | 8 | – | – | – | 6 | 16 | 0,027 | 1,0 | – | – |
| Первое поколение | | | | | | | | | | | | | |
| F1 | 9 | 501 | 19 (3,79 ±0,03) | 6 | 2 | – | – | – | 11 | 19 | 0,038 | 1,0 | 2,24 | <0,05 |
| F1 | 10 | 502 | 21 (4,18 ±0,04) | 8 | – | 1 | – | – | 12 | 24 | 0,042 | 1,0 | 2,35 | <0,05 |
| Второе поколение | | | | | | | | | | | | | |
| F2 | 12 | 494 | 18 (3,54 ±0,04) | 9 | 1 | – | – | – | 8 | 21 | 0,035 | 1,0 | 1,98 | <0,05 |
| F2 | 8 | 508 | 19 (3,74 ±0,04) | 10 | 1 | 1 | – | – | 7 | 23 | 0,037 | 1,0 | 1,62 | >0,05 |

Примечание: Частоты аберраций у F1 и F2 сравнивали с частотой аберраций у P. Частоты аберраций у F1 и F2 сравнивали с частотой аберраций у P. При Р=0,05 u=1,96, при Р=0,01 u=2,58, при Р=0,001 u=3,29 [Урбах. В.Ю., 1975, с. 159].

Для каждой анализируемой группы (поколение, пол) проанализировано от 494 до 526 метафазных пластин, полученных от 8-12 животных. Частота аберрантных метафаз варьировала от 2,38 до 4,18%. Спектр аберрантных метафаз был представлен полиплоидными клетками, парными фрагментами, двумя реципрокными транслокациями и одиночными фрагментами. Ахроматические пробелы многие исследователи не относят к аберрациям. Вместе с тем имеются сведения о том, что число пробелов коррелирует с числом обнаруживаемых аберраций хромосом. По этой причине число пробелов в таблице также указано. Полученные нами результаты свидетельствуют, что определённая корреляция между числом аберраций и числом ахроматических пробелов также наблюдается.
Во всех случаях аномальные метафазы содержали лишь по одной аберрации. За контрольные были приняты частоты аберраций хромосом в клетках свиноматок (2,38 ±0,03%) и клетках хряков (2,66 ±0,03%) родительского поколения. Различия между этими двумя группами животных статистически недостоверны, но объединять их в одну выборку животных родительского поколения мы считали не целесообразным, и дальнейшие сравнения частот выполняли по самцам и самкам отдельно.

Сравнение частот позволило обнаружить небольшое, но статистически достоверное увеличение частот аберраций у свинок первого и второго поколений.

У хряков первого поколения частота аберраций хромосом (4,18 ±0,4%) была статистически достоверно выше частоты аберраций в клетках хряков родительского поколения. Полученные факты можно было бы трактовать как небольшое, но стабильное увеличение частот аберраций хромосом в клетках поколений животных, полученных в селекционно-генетическом центре. Однако такому однозначному выводу препятствует обнаруженный факт того, что у хряков второго поколения частота аберраций статистически достоверно не отличалась от частот структурных нарушений хромосом в клетках хряков родительского поколения. Следовательно, обнаруженные факты пока не следует рассматривать как закономерность и нужно провести дополнительный анализ частот аберраций хромосом у животных первого и второго поколений. Возможно, что обнаруженные колебания частот аберраций хромосом в соматических клетках свиней являются реакцией их организмов на незначительные изменения экологических и технологических условий содержания после импорта. Дальнейшие исследования должны будут подтвердить или опровергнуть это предположение.

Частоту аберраций хромосом у КРС изучали, используя краткосрочные культуры лимфоцитов.

Исследовано 720 метафаз от 10 коров чёрно-пёстрой породы, выращиваемых в Болховском районе (КФХ Коськина В.В.). Исследование нестабильности хромосом у животных именно этого района объясняется повышенным уровнем радиоактивного загрязнения, возникшего в результате аварии на ЧАЭС. В апреле 1986 г. в Болховском районе было зарегистрировано повышение уровня радиации до 2500 мкР/ч. Постепенно уровень радиации понижался, но в настоящее время сохраняется выше естественного. Хроническое воздействие низких доз радиации является важной проблемой радиационной биологии. Генетические последствия хронического воздействия низких доз радиации требуют дальнейшего изучения. Характеристика частоты аберраций хромосом в соматических клетках животных, содержащихся в зоне с повышенным уровнем радиации, представляет существенный теоретический и практический интерес. В этой связи нами были изучены частоты аберраций хромосом у КРС Болховского района.

В общей сложности обнаружено 43 аберрантных клетки (5,97±0,66). Среди них 12 полилюпидных клеток, 4 клетки с парными и 27 – с одиночными фрагментами (табл. 2). Полученные данные подтверждаются сведениями о спонтанных частотах аберраций хромосом, установленными другими авторами [6, 15]. Так, по данным С.Г. Куликовой [6], у нормального молодняка КРС чёрно-пёстрой породы обнаружены следующие частоты соматической хромосомной нестабильности: для полилюпидии – 0,81%, гиперлюпидии – 0,72%, парных и парных фрагментов – 1,14%, хроматидных и хромосомных разрывов – 4,93%. Этим исследователем установлена «экологическая норма соматической хромосомной нестабильности для скота черно-пестрой породы Западной Сибири»: частота полилюпидии – 4,88%, гиперлюпидии – 0,45, гиполюпидии – 6,96, фрагментов – 2,05 и разрывов хромосом – 2,54%.

Таблица 2 – Частоты аберраций хромосом в культивируемых лимфоцитах коров Болховского района (КФХ Коськина В.В.)

<table>
<thead>
<tr>
<th>Выборка</th>
<th>Изучено</th>
</tr>
</thead>
<tbody>
<tr>
<td>Животных клеток</td>
<td>Количество и частота аберрантов клеток (% ± стандартная ошибка)</td>
</tr>
<tr>
<td>Полилюпидные клетки</td>
<td>Парные фрагменты</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
</tr>
</tbody>
</table>

Следует обратить внимание на установленный Куликовой С.Г. [6] факт, что сочетание патологических состояний телят и химического загрязнения природной среды приводит к более, чем трёхкратному увеличению нарушения стабильности хромосом в соматических клетках. В загрязнённых зонах частота аберраций хромосом у телят с аномалиями была в 3,3 раза больше (P<0,001). У фенотипически здоровых телят отмечено превышение аналогичных мутаций в 2,2 раза (P<0,001). Химическое загрязнение у молодняка крупного рогатого скота вызывало преимущественно нарушения хромосомного типа. У аномальных и здоровых телят в зоне химического загрязнения доля хромосомных разрывов от общего их количества
составляла 71,8 и 45,9%, для парных фрагментов – 52,1 и 44,9% [15].
Для получения более детальной картины частот хромосомных нарушений у КРС из районов с различной экологической нагрузкой Орловской области требуется дальнейшие исследования.

Выводы
1. Анализ карийотипов 169 свиней СПЦ «Знаменское» показал отсутствие наследуемых аберраций хромосом, выявляемых при монохромной окраске хромосом. Частота аберрантных метафаз в лимфоцитах вариировалась от 2,38 до 4,18%.
2. Пронализированы карийотипы 92 голов КРС трёх хозяйств Урицкого и Болховского районов. Робертсонаских транслокаций и иных наследуемых аберраций хромосом, выявляемых при изохромной окраске, не обнаружено.
3. Исследованы частоты аберраций хромосом в лимфоцитах крови коров Болховского района (КФХ Коськина В.В.). Частота аберрантных метафаз составила 5,9±0,88% . Спектр аберраций состоял из полиплоидных клеток, а также парных и одиночных фрагментов.

Литература
4. Завада, А.Н. Хромосомный анализ и возможность его использования в селекционной работе / А.Н. Завада // Современные аспекты селекции, биотехнологии, информатизации в племенном животноводстве: Юбил. сб. ВНИИплем. – 1997. – С. 279-301.
6. Куликова, С.Г. Цитогенетический мониторинг крупного рогатого скота в разных экологических зонах Западной Сибири и Северного Казахстана: специальность 06.02.01.: дис... докт. биол. н. / С.Г. Куликова – Новосибирск, 1998. – 294 с.
СОДЕРЖАНИЕ НОМЕРА

Официальное обращение губернатора Орловской области А.П. Колова к участникам Международной конференции «Мясное скотоводство в России: пути и перспективы развития».

Приветственное слово к участникам конференции ректора Орловского государственного аграрного университета, академика РАСХН Н.В. Паракина.

Амерханов Х.А. О развитии мясного скотоводства в России.

Мироновцев С.А., Тихонов А.А. Современное состояние и перспективы развития производства говядины в России.

Демин Н.Я. Современное свиноводство России: проблемы и перспективы.

Альберт Г. Технологические платформы в мире.

Егоров И.А., Буров В.С. Развитие новых направлений в области селекции, кормления и генетики крупного рогатого скота.

Лашук Р.Н. Мясное скотоводство Орловской области: потенциал и пути его реализации.

Сени Д.О., Масалов В.Н., Ильюкчук А.К. Состояние эндомитоза у ремонтных свинок после стимуляции половым феромоном хряка.

Павловская Н.Е., Горькова И.В., Гагарина И.Н. Гнездцев И.А., Гагарина А.Ю. Технология создания биологически активных добавок для животноводства.

Девкало А.Н., Сержева Н.Н. Улучшение продуктивных качеств свиней ливенской породы путем применения двухпородного скрещивания.

Белкин Б.Л., Кубаев В.А. Использование хозяйственных природных щелочепр и птицеводства.

Подухина М.Г., Шенякок А.И. Тенденции и перспективы развития племенного скотоводства в Орловской области.

Крюков В.И., Лашук Р.Н., Цветковский С.А. Анализ аберраций хромосом у свиней и крупного рогатого скота: первые результаты цитогенетического мониторинга сельскохозяйственных животных Орловской области.

Учаков Д.С., Яровая Н.Н., Сени О.Б., Анишин Д.С. Иммунобиохимический статус и продуктивность поросёк-сояцев и откормочных при использовании пробиотика «прогонент».

Михеева Е.А. Интенсивность роста молодняка симментальского голштинированного скота в зависимости от уровня радиации.

Смагина Т.В., Клебенова Н.В. Влияние биологически активных веществ на убойные показатели и качество мяса свиней.

Абрамкова Н.В., Феофилова Ю.Б., Колозов А.С. Особенности роста телет при различных уровнях пищи в рационе.

Волкова Н.Д., Степанов Л.В. Продолжительность хозяйственного использования черноснежных голштинированов ков.

Малюк А.А., Маликов Н.В., Гамков Л.Н., Масалов В.Н. Эффективность использования питательных веществ рациона кормов для 100 дней лактации у животных нескольких пород.

Соколова А.С., Максимов В.И., Верковский О.А. Морфологические показатели крови глубокостебельных коров при вакцинации.

Тимохин В.И., Скребнев Е.Н., Льков А.А., Рогожкина Н.В., Скребнев С.А., Сахно Н.В. К диагностике дисфункции молочной железы у самок сельскохозяйственных животных.

Тамарова Р.В., Приходьева С.В. Генеалогическая структура и молочная продуктивность коров михайловского типа ярославской породы крупного рогатого скота.

Мамаев А.В., Лещуков К.А., Меркулов А.С. Использование акустических методов для регулирования качества молока коров разного возраста.

Ермаченко А.С. Ранняя оценка по основным селекционным признакам импортного скота в России.

Безбородов П.Н. О заболеваниях сычуга крупного рогатого скота, не связанных с проведением хирургической резекции при лечении.

Чеченков Н.Н. Динамика микроорганизмов в слизистой оболочке двенадцатиперстной кишки ягнят в раннем постнатальном онтогенезе.

Гамков Л.Н., Маликов В.А., Маликов Н.В. Изменение живой массы коров под влиянием автозерковного кормления их за 21 день до отела и в первую фазу лактации.

Жданов С.И., Соболев В.Е. Защитные свойства глукозаминогликанов к повреждающему действию уксусной кислоты при экспериментальном цитостатическом действии.

Васilenко Р.М. Молочность кролиных разных пород и факторы, влияющие на нее.

Подгорный В.М. Инвестиционная активность в региональном АПК: состояние, стратегические приоритеты.

Ильютов Е.А., Соковка Е.Н. Энергоемкость производства продукции молочно-мясного скотоводства в хозяйствах Ульяновской области.

© ФГБОУ ВПО ОрелГАУ, 2011